Modular Arithmetic Using Low Order Redundant Bases
نویسندگان
چکیده
N-digit, radix-a bases are proposed for VLSI implementation of redundant arithmetic, mod m, where a m = ±1, a j m π ±1, for 0 < j < N and m is prime. These bases simplify arithmetic overflow and are well suited to redundant arithmetic. The representations provide competitive, multiplierless T-point Number Theoretic Transforms, mod m, where T | N or T | 2N.
منابع مشابه
Redundant Modular Reduction Algorithms
We present modular reduction algorithms over finite fields of large characteristic that allow the use of redundant modular arithmetic. This technique provides constant time reduction algorithms. Moreover, it can also be used to strengthen the differential side-channel resistance of asymmetric cryptosystems. We propose modifications to the classic Montgomery and Barrett reduction algorithms in o...
متن کاملOn duality of modular G-Riesz bases and G-Riesz bases in Hilbert C*-modules
In this paper, we investigate duality of modular g-Riesz bases and g-Riesz bases in Hilbert C*-modules. First we give some characterization of g-Riesz bases in Hilbert C*-modules, by using properties of operator theory. Next, we characterize the duals of a given g-Riesz basis in Hilbert C*-module. In addition, we obtain sufficient and necessary condition for a dual of a g-Riesz basis to be agai...
متن کاملSegment LLL Reduction of Lattice Bases Using Modular Arithmetic
The algorithm of Lenstra, Lenstra, and Lovász (LLL) transforms a given integer lattice basis into a reduced basis. Storjohann improved the worst case complexity of LLL algorithms by a factor of O(n) using modular arithmetic. Koy and Schnorr developed a segment-LLL basis reduction algorithm that generates lattice basis satisfying a weaker condition than the LLL reduced basis with O(n) improvemen...
متن کاملApplication of symmetric redundant residues for fast and reliable arithmetic
Despite difficulties in general division, magnitude comparison, and sign detection, residue number system arithmetic has been used for many special-purpose systems in light of its parallelism and modularity for the most common arithmetic operations of addition/subtraction and multiplication. Computation in RNS requires modular reduction, both for the initial conversion from binary to RNS and af...
متن کاملLow-Power Elliptic Curve Cryptography Using Scaled Modular Arithmetic
We introduce new modulus scaling techniques for transforming a class of primes into special forms which enables efficient arithmetic. The scaling technique may be used to improve multiplication and inversion in finite fields. We present an efficient inversion algorithm that utilizes the structure of scaled modulus. Our inversion algorithm exhibits superior performance to the Euclidean algorithm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IEEE Trans. Computers
دوره 46 شماره
صفحات -
تاریخ انتشار 1997